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Abstract. We develop an effective numerical method of studying large-time properties of reversible
reaction-diffusion systems of type A + B ↔ C with initially separated reactants. Using it we find that there
are three types of asymptotic reaction zones. In particular we show that the reaction rate can be locally
negative and concentrations of species A and B can be nonmonotonic functions of the space coordinate x,
locally significantly exceeding their initial values.

PACS. 66.30.Ny Chemical interdiffusion; diffusion barriers – 82.20.-w Chemical kinetics and dynamics –
02.60.Lj Ordinary and partial differential equations; boundary value problems

1 Introduction

Dynamic reaction fronts formed between initially sepa-
rated reactants A and B that perform Brownian motion
and react upon contact are an important component of
many physical, chemical and biological systems [1,2]. Most
theoretical [3–14], numerical [15] and experimental [16–20]
research has been focused on irreversible reactions of type
A + B → C, which exhibit many unexpected phenomena.
For example, the width of the reaction zone grows with
time t as tα with surprisingly small value of α = 1/6 [3,4],
the center of the reaction front can spontaneously change
the direction of its motion [8,17], and the mean-field ap-
proximation of the local reaction rate breaks down at and
below the critical dimension dc = 2 [6,7,15].

In reality, however, most chemical reactions are re-
versible. The simplest model of such a system [21] is
based on an assumption that concentrations a, b, and c
of species A, B, and C, respectively, effectively depend on
time t and only one space coordinate x (even though the
system is three-dimensional), and their evolution is gov-
erned by three reaction-diffusion equations

∂a(x, t)
∂t

= DA
∂2a(x, t)

∂x2
− R(x, t), (1)

∂b(x, t)
∂t

= DB
∂2b(x, t)

∂x2
− R(x, t), (2)

∂c(x, t)
∂t

= DC
∂2c(x, t)

∂x2
+ R(x, t), (3)

where the effective local reaction rate R(x, t) equals to the
difference between the production (A + B k→ C) and decay
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(C
g→ A + B ) rates of species C,

R(x, t) ≡ ka(x, t)b(x, t) − gc(x, t). (4)

Here DA, DB, and DC are diffusion coefficients of
species A, B, and C, respectively, and k, g > 0 are reaction
rate constants. It is also assumed that initially species A
and B are uniformly distributed on opposite sides of x = 0
with concentrations a0 and b0, respectively,

a(x, 0) = a0H(x), b(x, 0) = b0H(−x),
c(x, 0) = 0, (5)

where H(x) is the Heaviside step function (which is 0 for
x < 0 and 1 for x > 0). Such an initial condition is often
adopted in experiments [16–20] and simplifies theoretical
analysis, as it enables reduction of a three-dimensional
problem to a one-dimensional one.

This model was first studied by Chopard et al. [21].
They found that (a) the front width of a reversible reaction
asymptotically scales with time as if the process was gov-
erned solely by diffusion (w(t) ∝ t1/2) and (b) the mean-
field approximation (4) can be safely applied for systems
of spatial dimension d = 1, 2, 3. However, the fundamental
problem of giving a detailed description of spatiotemporal
evolution of reversible reaction-diffusion systems remained
open until quite recently.

This problem was recently considered by Sinder and
Pelleg [11–13]. They focused their attention mainly on the
limit of a vanishingly small backward reaction rate g and
found that in this limit concentrations of species A, B,
and C assume the forms typical of irreversible reactions
(g = 0) everywhere except in a very narrow reaction zone.
They confirmed the result of reference [21] that there is
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a crossover between intermediate-time “irreversible” and
large-time “reversible” regimes. They showed that the
asymptotic reaction rate R can have one or two maxima
and can even be locally negative (for irreversible reactions
R always has a single maximum an can never be negative).
Moreover, they presented strong arguments supporting a
conjecture that reversible reaction-diffusion processes can
be divided into two distinct universality classes. One of
them contains systems with immobile reaction product C
and asymptotically immobile reaction front, while systems
with all other combination of the control parameters form
the other universality class.

In our recent paper [22] we developed a new approach,
enabling one to analyze the large-time limit of reversible
reaction-diffusion systems directly, without having to solve
the original partial differential equations (1–3) and then
taking the limit t → ∞. We proved that in the large-
time limit functions a(x, t), b(x, t), c(x, t), and R(x, t) ef-
fectively depend on x only through ξ ≡ x/

√
t and take on

a form

a(x, t) = A(ξ), b(x, t) = B(ξ), c(x, t) = C(ξ),

R(x, t) = t−1R1(ξ) (6)

where the scaling functions A, B, C, and R1 are completely
determined by four equations

kAB − gC = 0, (7)

DA
d2A
dξ2

+
1
2
ξ
dA
dξ

= R1 (8)

DB
d2B
∂ξ2

+
1
2
ξ
dB
dξ

= R1 (9)

DC
d2C
dξ2

+
1
2
ξ
dC
dξ

= −R1 (10)

with the boundary conditions

lim
ξ→−∞

A(ξ) = a0, lim
ξ→∞

A(ξ) = 0, (11)

lim
ξ→−∞

B(ξ) = 0, lim
ξ→∞

B(ξ) = b0. (12)

Compared with the original problem of solving equa-
tions (1–3), this new approach has two advantages. First,
it involves only ordinary differential equations. Second, it
pertains directly to the large-time limit.

In principle equations (7–10) completely determine
the asymptotic, large-time spatiotemporal evolution of
an arbitrary reversible reaction-diffusion system. Unfortu-
nately, they are quite complex and a complete analytical
solution is known only for the case DA = DB = DC [22].
The aim of our paper is to examine these equations nu-
merically for other values of the control parameters.

2 Numerical results

By measuring length, time, and concentration in units of√
DA/ka0, 1/ka0, and a0, respectively, the general prob-

lem of solving (5–10) for arbitrary values of a0, b0, DA,

DB, DC , k, and g can be reduced to the one with [21]

DA = 1, a0 = 1, k = 1. (13)

We shall adopt these particular values in our further anal-
ysis. This will leave us with four independent control pa-
rameters: g, b0, DB, and DC .

Our basic equations (7–10) can be reduced to two or-
dinary differential equations with two unknown functions
A(ξ) and B(ξ),

d2
(A + DCg−1AB)

dξ2
= −1

2
ξ
d
(A + g−1AB)

dξ
(14)

d2
(
DBB + DCg−1AB)

dξ2
= −1

2
ξ
d
(B + g−1AB)

dξ
· (15)

To solve them we employed an iterative method. We
first assumed that B0(ξ) = 0 and, using standard tech-
niques [23], solved (14) as a linear ordinary differential
equation for A0(ξ) with boundary condition (11). We in-
serted this solution into (15), which was then solved as
a linear differential equation for B0(ξ). This solution was
again inserted into (14) and used to determine the next
approximation of A0(ξ). This procedure was repeated un-
til a required accuracy was achieved.

Taking B0(ξ) = 0 as the first approximation leads to
exact solution for g−1 = 0 (or, equivalently, k = 0) after
the first iteration cycle, and ensures quick convergence for
most choices of system parameters except when g � 1.
In this case the reaction zone is very narrow and inside it
functions A0(ξ) and B0(ξ) vary very rapidly, which makes
the direct iterative method unstable. This problem may
be circumvented by first solving (14) and (15) for g ∼ 1
and then decreasing g gradually until it reaches the re-
quired value, each time employing a solution obtained for
larger g as an initial guess for a smaller value of g. Once
A(ξ) and B(ξ) have been determined, the two remaining
functions of primary interest, C(ξ) and R1(ξ) can be cal-
culated directly from (7) and (8), respectively.

The iterative method cannot be applied directly for
DB = DC = 0, as in this case the left-hand side of (15)
vanishes and the order of this differential equation equals
1 rather than 2. Nevertheless, since in this very particular
case b(x, t) + c(x, t) = b0H(x), after some simple algebra
we can reduce (14) and (15) to a single equation

d2A(ξ)
dξ2

= −1
2
ξ
dA(ξ)

dξ

(
1 +

b0H(ξ)
[g + A(ξ)]2

)
· (16)

Although this equation looks very complicated, it can be
solved quite easily through standard numerical methods.

To estimate accuracy of the iterative method, we used
it to solve equations (14) and (15) for the case of equal dif-
fusion constants, DA = DB = DC = 1, and compared the
results with the exact solutions obtained in reference [22].
For b0 = 1, 0.1, 0.01, g = 100, 1, 0.01, and −5 < ξ < 5 we
found the relative error to be less than 10−6.

Next we used (14–16) to investigate thoroughly vari-
ous combinations of system parameters. To ensure that
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Fig. 1. A, B, C, and R1 (asymptotic concentrations of species
A, B, C, and the scaling function of the reaction rate, re-
spectively), as functions of ξ ≡ x/

√
t for a0 = 1, b0 = 0.5,

DA = DB = DC = 1, k = 1 and g = 0.01. Arbitrary units.

the boundary conditions (11–12) are actually satisfied,
we used a rather wide range −10 ≤ ξ ≤ 10 and com-
pared the results thus obtained with those calculated for
−15 ≤ ξ ≤ 15, finding no significant differences. More-
over, upon a thorough numerical scanning of the four-
dimensional parameter space we found that the solutions
of equations (7–10) are continuous functions of DB, DC ,
g, and b0 (even when going from one of Sinder and Pelleg’s
universality classes to the other), and can be divided into
three major categories distinguished by specific forms of
the local reaction rate R1.

2.1 Reaction fronts of type I

A characteristic feature of reaction fronts of type I is that
the asymptotic reaction rate R1(ξ) is positive for all ξ and
has a single maximum, which may be identified with the
reaction front center ξf . A typical example of such a re-
action front is illustrated in Figure 1, which was obtained
for b0 = 0.5, DA = DB = DC = 1, and g = 0.01. As
in this case ξf > 0, we may say that the reaction front
moves towards the right-hand side of the system. This
type of solution always appears for DA = DB = DC [22]
and for g = 0 [3], and so we expect it also to appear for
DA ≈ DB ≈ DC or for g � 1.

Interestingly, it turns out that the reaction front
formed in the case DB = DC = 0 also belongs to this
category. This is clearly seen in Figure 2, obtained for
DB = DC = 0, b0 = 0.5, and g = 0.02. A characteristic
feature of this case is discontinuity of B(ξ) and C(ξ) at
ξ = 0. This reflects the presence of the Heaviside function
in equation (16).

2.2 Reaction fronts of type II

An example of the second type of the asymptotic solu-
tion is depicted in Figure 3, which was obtained for much
smaller value of DC = 0.01 (the values of other control pa-
rameters were DB = 0.5, b0 = 0.25, and g = 0.01). In this
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Fig. 2. A, B, C, and R1 as functions of ξ ≡ x/
√

t for a0 = 1,
b0 = 0.5, DA = 1, DB = DC = 0, k = 1 and g = 0.02. Note
that B(ξ) and C(ξ) vanish for ξ < 0. Arbitrary units.
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Fig. 3. A, B, C, and R1 as functions of ξ ≡ x/
√

t for a0 = 1,
b0 = 0.25, DA = DB = 1, DC = 0.01, k = 1 and g = 0.01.
Note that R1(ξ) can assume negative values. Arbitrary units.

case R1 has two maxima ξmax
1 ≈ −0.26 and ξmax

2 ≈ 1.38.
As they are of opposite signs, the system apparently has
two reaction fronts moving at opposite directions. More-
over, the reaction rate has one minimum, ξmin ≈ 0.19,
at which it attains a negative value. In the region where
R1 < 0 the backward reaction (C

g→ A + B) is thus locally
faster than the forward reaction (A + B k→ C), although
of course the global reaction rate

∫∞
0 R1(ξ) dξ > 0.

Formation of a region with negative value of R1 can be
understood as follows. Consider an asymmetric reaction-
diffusion system with very small diffusion coefficient of
species C (DC � DA, DB) and a small backward reac-
tion rate g. As the reaction proceeds, the reaction front
moves through the system, leaving behind a region filled
with practically immobile and very slowly decaying re-
action product C. At some moment the mobile reaction
front will leave this region, and so the backward reaction,
however small, may start to dominate. This may lead to
formation of a region where R1(ξ) attains a locally mini-
mal, perhaps even negative value.

The dominant backward reaction should lead to pro-
duction of additional molecules of type A and B. Because
DA, DB 
 DC , these molecules can easily diffuse away
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Fig. 4. A, B, C, and R1 as functions of ξ ≡ x/
√

t for a0 = 1,
b0 = 0.25, DA = 1, DB = 32, DC = 0.01, k = 1 and g = 0.01.
Arbitrary units.

from the region filled with molecules C. Then, at the other
edge of the region rich in species C, they should give a sig-
nificant contribution to the forward reaction rate, forcing
R1(ξ) to change its sign back to positive and forming the
other reaction front. Such scenario is confirmed by Fig-
ure 3, which shows that molecules B are present in the
whole region densely occupied by molecules C, including
a region between ξmax

1 and 0. Molecules of type B are
present in this region even though the main reaction front,
located near ξmax

2 , is constantly moving away.
Reaction fronts of type II were first observed by Sinder

and Pelleg [13] in systems with DC = 0. They came to the
conclusion that for mobile reaction fronts (xf (t) �= 0) the
larger maximum is located near the point where a(x, t) ≈
b(x, t). However, we found that the opposite situation is
also possible. This is illustrated in Figure 4, obtained for
DC = 0.01, DB = 32, b0 = 0.25, and g = 0.01. As we
can see, in this case a(x) ≈ b(x) near the second, much
smaller maximum of R1(x).

We expect reaction fronts of type II to be typical of sys-
tems where either DB or DC are much smaller than DA.
We base this conjecture on equations (9, 10) which ensure
that if DC = 0 or DB = 0 then R1(0) = 0. Since R1(ξ)
is continuous we may thus expect that at least for highly
asymmetric reaction fronts R1(ξ) will attain negative val-
ues in the vicinity of ξ = 0.

2.3 Reaction fronts of type III

It turns out that A0(ξ) and B0(ξ) may be nonmonotonic
functions of ξ. In this case, which we call reaction front of
type III, R1(ξ) has a single maximum surrounded by two
minimums at which R1(ξ) < 0. All these properties are
clearly seen in Figure 5, obtained for DC = 10, DB = 0.1,
b0 = 0.5, and g = 2.

This type of a reaction front can be uniquely identified
by determining whether the maximal value of a, denoted
amax, exceeds a0 (or, similarly, whether bmax > b0). We
employed this criterion in our numerical calculations. On
extensive scanning of the 4-dimensional space of free pa-
rameters we came to the conclusion that the necessary
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Fig. 5. A, B, C, and R1 as functions of ξ ≡ x/
√

t for a0 = 1,
b0 = 0.5, DA = 1, DB = 0.1, DC = 10, k = 1 and g = 2.
Note that A0(ξ) and B0(ξ) are nonmonotonic and R1 can be
negative. Arbitrary units.
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Fig. 6. The maximal relative increase of the concentration
of species B, ∆̃bmax ≡ (bmax − b0)/b0, as a function of DC for
g = 0.01, b0 = 0.01 (solid lines), 0.001 (dashed lines), DB = 0
(◦), 0.5 (�), and 2 (×). Arbitrary units.

and sufficient condition for this type of the asymptotic
reaction front reads

DC > max(DA, DB). (17)

However, only for DC 
 max(DA, DB) is the effect re-
ally significant. We also found that the maximal rela-
tive increase in concentrations of species B, ∆̃bmax ≡
(bmax − b0)/b0, is an increasing function of DC and a de-
creasing function of both b0 and DB. In particular ∆̃bmax

turns out to be very sensitive to changes of b0, i.e. a pa-
rameter that can be easily controlled experimentally. As
for g, ∆̃bmax attains a maximal value at g ≈ 1 and de-
creases as g → 0 or g → ∞. These findings are depicted
in Figure 6, which presents ∆̃bmax as a function of DC ob-
tained for g = 0.01, b0 = 0.01 (solid lines), 0.001 (dashed
lines), and DB = 0 (circles), 0.5 (diamonds), 2.0 (crosses).
As we can see, ∆̃bmax can attain quite high values, exceed-
ing 60%.

The unusual features of this asymptotic solution can
be explained as follows. For DC 
 DA, DB molecules C
quickly diffuse away from the reaction layer. They may
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thus form a region where the reverse reaction dominates
the forward one, leading to R1(ξ) < 0. The same phe-
nomenon brings about production of additional backward
reaction products A and B outside the main reaction zone.
For suitably chosen system parameters this can result in a
situation where A0(ξ) and B0(ξ) are nonmonotonic. This
effect should become more pronounced with increased ve-
locity of the reaction zone (i.e., when b0, DB → 0) and
becomes negligibly small as g → 0 (negligible backward
reaction) or g → ∞ (negligible forward reaction).

3 Conclusions

We have analyzed numerically the large-time properties
of reaction fronts formed in reversible reaction-diffusion
systems of type A + B ↔ C. We found that, depending
on the values of control parameters, reversible reaction
fronts can be divided into three categories. In reaction
fronts of type I the local reaction rate is always positive
and has a well defined, single maximum. In reaction fronts
of type II the local reaction rate has two maxima, moving
in opposite directions, and a single minimum, which can
attain a negative value. In reaction fronts of type III the
local reaction rate has a single maximum surrounded by
two minima, at which it attains negative values; moreover,
the concentrations of species A and B are here locally
larger than their initial values. Our numerical calculations
indicate that the condition for this type of reaction front
is given by a formula DC > max(DA, DB) and that the
effect of the local increase in concentration of species A
or B can be easily controlled experimentally through their
initial concentrations a0 or b0.

We found that the large-time behaviour of reversible
reaction-diffusion systems is richer than that of irre-
versible ones. Depending on the values of the control
parameters one can expect qualitatively different asymp-
totic solutions. Although the “anomalous” effects are
rather small, we believe that they could be observed
experimentally. It would be particularly interesting
to investigate effects of nonmonotonic dependence of
concentrations of reactants A and B on the space co-
ordinate x in systems with reaction fronts of type III.
If the A + B ↔ C reaction were a part of a more
complex reaction scheme such that additional reaction
steps (e.g. precipitation) could occur only above some
threshold values of the reactant concentrations (e.g.
nucleation thresholds), setting a0 or b0 just below
such a threshold value might lead to some interesting
phenomena. An example of such a complex process is

formation of the Liesegang patterns, which are quasiperi-
odic precipitation patterns emerging in the wake of a mo-
bile chemical reaction front [24,25]. Our study indicates
that it should be possible to obtain similar precipitation
patterns of species B in reaction-diffusion systems with re-
versible reaction of type A + B ↔ C, diffusion coefficients
DC 
 DA, DB, and initial concentrations a0 
 b0.

References

1. S.A. Rice, Diffusion Limited Reactions (Elsevier, Amster-
dam, 1985)

2. D. ben Avraham, S. Havlin, Diffusion and Reactions in
Fractals and Disordered Systems (Cambridge Univ. Press,
Cambridge, 2000)
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